Go to Bitmap.us Home


  
  Online 3D Segmentation Analysis Algorithm.
 
  Choose left-eye photo (α1 (x) Img1 (for Img1 over Img2)):
  URL:  Or Disk: 
  (x)
  Choose right-eye photo (α2 (x) Img2 (for Img2 behind Img1)):
  URL:  Or Disk: 

  Choose photo source direction: 

  Combine two colours to create a new third colour to expose more detail of a tumor, blood clot, excess fluid or etc...
  Left-eye colour (α1 =  Alpha Ratio:  (x) Img1 + (1–α1)):  Threshold: 
  (x)
  Right-eye colour (α2 =  Alpha Ratio:  (x) Img2 + (1–α1)):  Threshold: 

  The Alpha Ratio values control opacity to add transparency in each individual photo for α1 (x) Img1 and α2 (x) Img2 (.0-.255). 
  The Threshold values are used for segmenting objects in each individual photo for Img1 and Img2 (.0 -.255 or 1.0 - 255.0). 

   M = ( P=α ( Width:  pixels  (x)   Height:  pixels )X  + ( 1-α=(α1 and α2) )Y )  (×) C = ((1–α2) (×) B)

   Result of algorithm = α1 × Img1 + (1–α1) × α2 × Img2 + (1–α1) × (1–α2) × B for M (x) C.

   Note: For best "Ratio" results use (.255) for colours and  (.5) for Alpha 3D to Alpha 3D. 

   This algorithm allows the comparison of two aligned image studies using color image segmentation
   based on thresholding to detect cancerous ailments in the body, or in the bloodstream.
                 
 
   Dicom (.dcm) to .jpg(jpeg) • Examples • Colours  
   Uploading can take 30-to-90 seconds or more depending on the photo size.

     x   Your photo should be in .jpg format not exceed 2MBytes per photo in filesize.
 

      
    
    
    

         Valid XHTML  |   Valid CSS  |   Experiments  |   Instructions  |   D  |   P=αX+(1-α)Y  |   α1 × Img1 + (1–α1) × α2 × Img2 + (1–α1) × (1–α2) × B  |   v1.7.3

         Secure  Connection Secured